
11/19/23, 6:58 PM ML_TikTok project by Ayobola Lawal_II - Jupyter Notebook

localhost:8888/notebooks/Downloads/Data Science Project/ML_TikTok project by Ayobola Lawal_II.ipynb# 1/25

TikTok Project
The nuts and bolts of machine learning

In the project scenario where I am a data professional at TikTok. The data team is working
towards building a machine learning model that can be used to determine whether a video
contains a claim or whether it offers an opinion. With a successful prediction model, TikTok can
reduce the backlog of user reports and prioritize them more efficiently. Now my supervisor was
impressed with the work I have done with the planning and has requested that my team should
proceed with the project of building a machine learning model that can be used to determine
whether a video contains a claim or whether it offers an opinion. With a successful prediction
model, TikTok can reduce the backlog of user reports and prioritize them more efficiently.

Project: Classifying videos using machine
learning
In this activity, we will practice using machine learning techniques to predict on a binary
outcome variable.

The purpose of this model is to mitigate misinformation in videos on the TikTok platform.

The goal of this model is to predict whether a TikTok video presents a "claim" or presents an
"opinion".

This activity has three parts:

Part 1: Ethical considerations

Consider the ethical implications of the request
Should the objective of the model be adjusted?

Part 2: Feature engineering

Perform feature selection, extraction, and transformation to prepare the data for modeling

Part 3: Modeling

Build the models, evaluate them, and advise on next steps

Classify videos using machine learning

PACE stages

11/19/23, 6:58 PM ML_TikTok project by Ayobola Lawal_II - Jupyter Notebook

localhost:8888/notebooks/Downloads/Data Science Project/ML_TikTok project by Ayobola Lawal_II.ipynb# 2/25

Throughout these project notebooks, we will see references to the problem-solving framework
PACE. The following notebook components are labeled with the respective PACE stage: Plan,
Analyze, Construct, and Execute.

Pace: Plan
Consider the questions in the PACE Strategy Document to reflect on the Plan stage.

In this stage, consider the following questions:

1. What are we being asked to do? What metric should we use to evaluate success of
my business/organizational objective?

2. What are the ethical implications of the model? What are the consequences of the
model making errors?

What is the likely effect of the model when it predicts a false negative (i.e., when the
model says a video does not contain a claim and it actually does)?
What is the likely effect of the model when it predicts a false positive (i.e., when the
model says a video does contain a claim and it actually does not)?

3. How would we proceed?

Exemplar responses:

1. What are we being asked to do?

Business need and modeling objective

TikTok users can report videos that they believe violate the platform's terms of service. Because
there are millions of TikTok videos created and viewed every day, this means that many videos
get reported—too many to be individually reviewed by a human moderator.

Analysis indicates that when authors do violate the terms of service, they're much more likely to
be presenting a claim than an opinion. Therefore, it is useful to be able to determine which
videos make claims and which videos are opinions.

TikTok wants to build a machine learning model to help identify claims and opinions. Videos that
are labeled opinions will be less likely to go on to be reviewed by a human moderator. Videos
that are labeled as claims will be further sorted by a downstream process to determine whether
they should get prioritized for review. For example, perhaps videos that are classified as claims
would then be ranked by how many times they were reported, then the top x% would be
reviewed by a human each day.

A machine learning model would greatly assist in the effort to present human moderators with
videos that are most likely to be in violation of TikTok's terms of service.

Modeling design and target variable

11/19/23, 6:58 PM ML_TikTok project by Ayobola Lawal_II - Jupyter Notebook

localhost:8888/notebooks/Downloads/Data Science Project/ML_TikTok project by Ayobola Lawal_II.ipynb# 3/25

The data dictionary shows that there is a column called claim_status . This is a binary value
that indicates whether a video is a claim or an opinion. This will be the target variable. In other
words, for each video, the model should predict whether the video is a claim or an opinion.

Select an evaluation metric

To determine which evaluation metric might be best, consider how the model might be wrong.
There are two possibilities for bad predictions:

False positives: When the model predicts a video is a claim when in fact it is an opinion
False negatives: When the model predicts a video is an opinion when in fact it is a claim

2. What are the ethical implications of building the model? In the given scenario, it's better
for the model to predict false positives when it makes a mistake, and worse for it to predict false
negatives. It's very important to identify videos that break the terms of service, even if that
means some opinion videos are misclassified as claims. The worst case for an opinion
misclassified as a claim is that the video goes to human review. The worst case for a claim that's
misclassified as an opinion is that the video does not get reviewed and it violates the terms of
service. A video that violates the terms of service would be considered posted from a "banned"
author, as referenced in the data dictionary.

Because it's more important to minimize false negatives, the model evaluation metric will be
recall.

3. How would we proceed?

Modeling workflow and model selection process

Previous work with this data has revealed that there are ~20,000 videos in the sample. This is
sufficient to conduct a rigorous model validation workflow, broken into the following steps:

1. Split the data into train/validation/test sets (60/20/20)
2. Fit models and tune hyperparameters on the training set
3. Perform final model selection on the validation set
4. Assess the champion model's performance on the test set

Task 1. Imports and data loading
Start by importing packages needed to build machine learning models to achieve the goal of this
project.

11/19/23, 6:58 PM ML_TikTok project by Ayobola Lawal_II - Jupyter Notebook

localhost:8888/notebooks/Downloads/Data Science Project/ML_TikTok project by Ayobola Lawal_II.ipynb# 4/25

In [3]:

Load the data from the provided csv file into a dataframe.

Note: As shown in this cell, the dataset has been automatically loaded. We do not need to
download the .csv file, or provide more code.

In [4]:

PACE: Analyze
Consider the questions in the PACE Strategy Document to reflect on the Analyze stage.

Task 2: Examine data, summary info, and descriptive stats

Inspect the first five rows of the dataframe.

Import packages for data manipulation
import pandas as pd
import numpy as np
​
Import packages for data visualization
import matplotlib.pyplot as plt
import seaborn as sns
​
Import packages for data preprocessing
from sklearn.feature_extraction.text import CountVectorizer
​
Import packages for data modeling
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.metrics import classification_report, accuracy_score, precision_sc
recall_score, f1_score, confusion_matrix, ConfusionMatrixDisplay
​
from sklearn.ensemble import RandomForestClassifier
from xgboost import XGBClassifier
from xgboost import plot_importance

Load dataset into dataframe
data = pd.read_csv("tiktok_dataset.csv")

11/19/23, 6:58 PM ML_TikTok project by Ayobola Lawal_II - Jupyter Notebook

localhost:8888/notebooks/Downloads/Data Science Project/ML_TikTok project by Ayobola Lawal_II.ipynb# 5/25

In [5]:

Get the number of rows and columns in the dataset.

In [6]:

Get basic information about the dataset.

In [7]:

Generate basic descriptive statistics about the dataset.

Out[5]: # claim_status video_id video_duration_sec video_transcription_text verified_status auth

0 1 claim 7017666017 59 someone shared with me
that drone deliveries a... not verified

1 2 claim 4014381136 32 someone shared with me
that there are more mic... not verified

2 3 claim 9859838091 31 someone shared with me
that american industria... not verified

3 4 claim 1866847991 25 someone shared with me
that the metro of st. p... not verified

4 5 claim 7105231098 19 someone shared with me
that the number of busi... not verified

Out[6]: (19382, 12)

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 19382 entries, 0 to 19381
Data columns (total 12 columns):
Column Non-Null Count Dtype

--- ------ -------------- -----
0 # 19382 non-null int64
1 claim_status 19084 non-null object
2 video_id 19382 non-null int64
3 video_duration_sec 19382 non-null int64
4 video_transcription_text 19084 non-null object
5 verified_status 19382 non-null object
6 author_ban_status 19382 non-null object
7 video_view_count 19084 non-null float64
8 video_like_count 19084 non-null float64
9 video_share_count 19084 non-null float64
10 video_download_count 19084 non-null float64
11 video_comment_count 19084 non-null float64

dtypes: float64(5), int64(3), object(4)
memory usage: 1.8+ MB

Display first few rows
data.head()

Get number of rows and columns
data.shape

Get basic information
data.info()

11/19/23, 6:58 PM ML_TikTok project by Ayobola Lawal_II - Jupyter Notebook

localhost:8888/notebooks/Downloads/Data Science Project/ML_TikTok project by Ayobola Lawal_II.ipynb# 6/25

In [8]:

Check for and handle missing values

In [9]:

Exemplar response: There are very few missing values relative to the number of samples in
the dataset. Therefore, observations with missing values can be dropped.

In [10]:

Check for and handle duplicates

In [11]:

Exemplar response: There are no duplicate observations in the data.

Out[8]: # video_id video_duration_sec video_view_count video_like_count video

count 19382.000000 1.938200e+04 19382.000000 19084.000000 19084.000000

mean 9691.500000 5.627454e+09 32.421732 254708.558688 84304.636030

std 5595.245794 2.536440e+09 16.229967 322893.280814 133420.546814

min 1.000000 1.234959e+09 5.000000 20.000000 0.000000

25% 4846.250000 3.430417e+09 18.000000 4942.500000 810.750000

50% 9691.500000 5.618664e+09 32.000000 9954.500000 3403.500000

75% 14536.750000 7.843960e+09 47.000000 504327.000000 125020.000000

max 19382.000000 9.999873e+09 60.000000 999817.000000 657830.000000

Out[9]: # 0
claim_status 298
video_id 0
video_duration_sec 0
video_transcription_text 298
verified_status 0
author_ban_status 0
video_view_count 298
video_like_count 298
video_share_count 298
video_download_count 298
video_comment_count 298
dtype: int64

Out[11]: 0

Generate basic descriptive stats
data.describe()

Check for missing values
data.isna().sum()

Drop rows with missing values
data = data.dropna(axis=0)

Check for duplicates
data.duplicated().sum()

11/19/23, 6:58 PM ML_TikTok project by Ayobola Lawal_II - Jupyter Notebook

localhost:8888/notebooks/Downloads/Data Science Project/ML_TikTok project by Ayobola Lawal_II.ipynb# 7/25

Check for and handle outliers

Exemplar response: Tree-based models are robust to outliers, so there is no need to impute or
drop any values based on where they fall in their distribution.

Check class balance.

In [12]:

Exemplar response: Approximately 50.3% of the dataset represents claims and 49.7%
represents opinions, so the outcome variable is balanced.

PACE: Construct
Consider the questions in the PACE Strategy Document to reflect on the Construct stage.

Task 3. Feature engineering
Extract the length (character count) of each video_transcription_text and add this to the
dataframe as a new column called text_length so that it can be used as a feature in the
model.

In [13]:

Calculate the average text_length for claims and opinions.

Out[12]: claim_status
claim 0.503458
opinion 0.496542
Name: proportion, dtype: float64

Out[13]: # claim_status video_id video_duration_sec video_transcription_text verified_status auth

0 1 claim 7017666017 59 someone shared with me
that drone deliveries a... not verified

1 2 claim 4014381136 32 someone shared with me
that there are more mic... not verified

2 3 claim 9859838091 31 someone shared with me
that american industria... not verified

3 4 claim 1866847991 25 someone shared with me
that the metro of st. p... not verified

4 5 claim 7105231098 19 someone shared with me
that the number of busi... not verified

Check class balance
data["claim_status"].value_counts(normalize=True)

Create `text_length` column
data['text_length'] = data['video_transcription_text'].str.len()
data.head()

11/19/23, 6:58 PM ML_TikTok project by Ayobola Lawal_II - Jupyter Notebook

localhost:8888/notebooks/Downloads/Data Science Project/ML_TikTok project by Ayobola Lawal_II.ipynb# 8/25

In [14]:

Visualize the distribution of text_length for claims and opinions using a histogram.

In [15]:

Letter count distributions for both claims and opinions are approximately normal with a slight
right skew. Claim videos tend to have more characters—about 13 more on average, as
indicated in a previous cell.

Out[14]: text_length

claim_status

claim 95.376978

opinion 82.722562

data[['claim_status', 'text_length']].groupby('claim_status').mean()

Visualize the distribution of `video_transcription_text` length for claims an
Create two histograms in one plot
​
sns.histplot(data=data, stat="count", multiple="dodge", x="text_length",
 kde=False, palette="pastel", hue="claim_status",
 element="bars", legend=True)
plt.xlabel("video_transcription_text length (number of characters)")
plt.ylabel("Count")
plt.title("Distribution of video_transcription_text length for claims and opini
plt.show()

11/19/23, 6:58 PM ML_TikTok project by Ayobola Lawal_II - Jupyter Notebook

localhost:8888/notebooks/Downloads/Data Science Project/ML_TikTok project by Ayobola Lawal_II.ipynb# 9/25

Feature selection and transformation

Encode target and catgorical variables.

In [16]:

Task 4. Split the data

Assign target variable.

Exemplar response: In this case, the target variable is claim_status .

0 represents an opinion
1 represents a claim

In [17]:

Isolate the features.

Out[16]:
claim_status video_duration_sec video_transcription_text video_view_count video_like_count

0 1 59 someone shared with me
that drone deliveries a... 343296.0 19425.0

1 1 32 someone shared with me
that there are more mic... 140877.0 77355.0

2 1 31 someone shared with me
that american industria... 902185.0 97690.0

3 1 25 someone shared with me
that the metro of st. p... 437506.0 239954.0

4 1 19 someone shared with me
that the number of busi... 56167.0 34987.0

X = data.copy()
Drop unnecessary columns
X = X.drop(['#', 'video_id'], axis=1)
Encode target variable
X['claim_status'] = X['claim_status'].replace({'opinion': 0, 'claim': 1})
Dummy encode remaining categorical values
X = pd.get_dummies(X,
 columns=['verified_status', 'author_ban_status'],
 drop_first=True)
X.head()

Isolate target variable
y = X['claim_status']

11/19/23, 6:58 PM ML_TikTok project by Ayobola Lawal_II - Jupyter Notebook

localhost:8888/notebooks/Downloads/Data Science Project/ML_TikTok project by Ayobola Lawal_II.ipynb# 10/25

In [18]:

Task 5: Create train/validate/test sets

Split data into training and testing sets, 80/20.

In [19]:

Split the training set into training and validation sets, 75/25, to result in a final ratio of 60/20/20
for train/validate/test sets.

In [20]:

Confirm that the dimensions of the training, validation, and testing sets are in alignment.

In [21]:

Exemplar notes:

The number of features (11) aligns between the training and testing sets.
The number of rows aligns between the features and the outcome variable for training
(11,450) and both validation and testing data (3,817).

Out[18]:
video_duration_sec video_transcription_text video_view_count video_like_count video_share_c

0 59 someone shared with me
that drone deliveries a... 343296.0 19425.0

1 32 someone shared with me
that there are more mic... 140877.0 77355.0 19

2 31 someone shared with me
that american industria... 902185.0 97690.0 2

3 25 someone shared with me
that the metro of st. p... 437506.0 239954.0 34

4 19 someone shared with me
that the number of busi... 56167.0 34987.0 4

Out[21]: ((11450, 11), (3817, 11), (3817, 11), (11450,), (3817,), (3817,))

Isolate features
X = X.drop(['claim_status'], axis=1)
​
Display first few rows of features dataframe
X.head()

Split the data into training and testing sets
X_tr, X_test, y_tr, y_test = train_test_split(X, y, test_size=0.2, random_state

Split the training data into training and validation sets
X_train, X_val, y_train, y_val = train_test_split(X_tr, y_tr, test_size=0.25, r

Get shape of each training, validation, and testing set
X_train.shape, X_val.shape, X_test.shape, y_train.shape, y_val.shape, y_test.sh

11/19/23, 6:58 PM ML_TikTok project by Ayobola Lawal_II - Jupyter Notebook

localhost:8888/notebooks/Downloads/Data Science Project/ML_TikTok project by Ayobola Lawal_II.ipynb# 11/25

Tokenize text column
NOTE: We are not expected to do this or know this, but we might find it useful and/or interesting
to understand some basic ideas behind natural language processing (NLP), because of the
nature of the data provided in this TikTok project.

The feature video_transcription_text is text-based. It is not a categorical variable, since it
does not have a fixed number of possible values. One way to extract numerical features from it
is through a bag-of-words algorithm like CountVectorizer (https://scikit-
learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html).

CountVectorizer works by splitting text into n-grams, which are groups of n consecutive
words. For instance, "a dime for a cup of coffee" (phrase A) broken into 2-grams would result in
six two-word combinations:

a dime | dime for | for a | a cup | cup of | of coffee |

Then, the next sample's text would be parsed into 2-grams. So, "ask for a cup for a child"
(phrase B) would result in:

ask for | for a | a cup | cup for | for a | a child |

This process would repeat for each observation in the dataset, and each n-gram would be
treated like a distinct feature. Then, the text of each observation is compared to the full array of
n-grams, and the numbers of occurrences are tallied:

a
dime

dime
for

for
a

a
cup

cup
of

of
coffee

ask
for

cup
for

a
child

phrase
A 1 1 1 1 1 1 0 0 0

phrase
B 0 0 2 1 1 0 1 1 1

TOTAL 1 1 3 2 2 1 1 1 1

This would happen for the text of each observation in the data, and the text of each observation
is parsed to get tallies for all the 2-word phrases from the entire data set for each observation,
creating a large matrix.

If text is broken into 1-grams, then each feature in the matrix is an individual word.

After the count matrix has been created, CountVectorizer lets us choose to keep only the
most frequently occurring n-grams. You specify how many. The n-grams that we select can then
be used as features in a model.

Splitting text into n-grams is an example of tokenization. Tokenization is the process of breaking
text into smaller units to derive meaning from the resulting tokens.

This notebook breaks each video's transcription text into both 2-grams and 3-grams, then takes
the 15 most frequently occurring tokens from the entire dataset to use as features.

11/19/23, 6:58 PM ML_TikTok project by Ayobola Lawal_II - Jupyter Notebook

localhost:8888/notebooks/Downloads/Data Science Project/ML_TikTok project by Ayobola Lawal_II.ipynb# 12/25

In [22]:

Fit the vectorizer to the training data (generate the n-grams) and transform it (tally the
occurrences). Only fit to the training data, not the validation or test data.

In [23]:

In [24]:

Out[22]: CountVectorizer(max_features=15, ngram_range=(2, 3), stop_words='english')
In a Jupyter environment, please rerun this cell to show the HTML representation or trust
the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with
nbviewer.org.

Out[23]: array([[0, 0, 0, ..., 0, 0, 0],
 [0, 0, 0, ..., 0, 0, 0],
 [0, 0, 0, ..., 0, 0, 0],
 ...,
 [0, 0, 1, ..., 1, 0, 0],
 [0, 0, 0, ..., 0, 0, 0],
 [0, 0, 0, ..., 0, 0, 0]])

Out[24]: colleague
discovered

colleague
learned

colleague
read

discovered
news

discussion
board

friend
learned

friend
read

internet
forum

learned
media

m
c

0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 1 0 0

2 0 0 0 0 0 0 1 0 0

3 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0

Set up a `CountVectorizer` object, which converts a collection of text to a m
count_vec = CountVectorizer(ngram_range=(2, 3),
 max_features=15,
 stop_words='english')
count_vec

Extract numerical features from `video_transcription_text` in the training se
count_data = count_vec.fit_transform(X_train['video_transcription_text']).toarr
count_data

Place the numerical representation of `video_transcription_text` from trainin
count_df = pd.DataFrame(data=count_data, columns=count_vec.get_feature_names_ou
​
Display first few rows
count_df.head()

11/19/23, 6:58 PM ML_TikTok project by Ayobola Lawal_II - Jupyter Notebook

localhost:8888/notebooks/Downloads/Data Science Project/ML_TikTok project by Ayobola Lawal_II.ipynb# 13/25

In [25]:

Get n-gram counts for the validation data. Notice that the vectorizer is not being refit to the
validation data. It's only transforming it. In other words, the transcriptions of the videos in the
validation data are only being checked against the n-grams found in the training data.

In [26]:

In [27]:

Out[25]:
video_duration_sec video_view_count video_like_count video_share_count video_download_co

0 51 2487.0 310.0 20.0

1 43 118512.0 3543.0 374.0

2 22 105902.0 1885.0 229.0

3 17 9245.0 1670.0 440.0

4 18 3791.0 660.0 63.0

5 rows × 25 columns

Out[26]: array([[0, 0, 0, ..., 1, 0, 0],
 [0, 0, 0, ..., 0, 0, 0],
 [0, 0, 0, ..., 1, 0, 0],
 ...,
 [0, 0, 0, ..., 0, 0, 0],
 [0, 1, 0, ..., 0, 0, 0],
 [0, 0, 0, ..., 0, 0, 0]])

Out[27]: colleague
discovered

colleague
learned

colleague
read

discovered
news

discussion
board

friend
learned

friend
read

internet
forum

learned
media

m
c

0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 1 0 0

3 0 0 0 0 0 0 0 0 0

4 0 0 1 0 0 0 0 0 0

Concatenate `X_train` and `count_df` to form the final dataframe for training
Note: Using `.reset_index(drop=True)` to reset the index in X_train after dro
so that the indices align with those in `X_train` and `count_df`
X_train_final = pd.concat([X_train.drop(columns=['video_transcription_text']).r
​
Display first few rows
X_train_final.head()

Extract numerical features from `video_transcription_text` in the testing set
validation_count_data = count_vec.transform(X_val['video_transcription_text'])
validation_count_data

Place the numerical representation of `video_transcription_text` from validat
validation_count_df = pd.DataFrame(data=validation_count_data, columns=count_ve
validation_count_df.head()

11/19/23, 6:58 PM ML_TikTok project by Ayobola Lawal_II - Jupyter Notebook

localhost:8888/notebooks/Downloads/Data Science Project/ML_TikTok project by Ayobola Lawal_II.ipynb# 14/25

In [28]:

Repeat the process to get n-gram counts for the test data. Again, don't refit the vectorizer to the
test data. Just transform it.

In [29]:

Out[28]:
video_duration_sec video_view_count video_like_count video_share_count video_download_co

0 11 578891.0 379596.0 14612.0 65

1 24 6255.0 1709.0 311.0

2 35 410356.0 249714.0 26235.0 20

3 58 406911.0 25986.0 1230.0 5

4 47 972573.0 138167.0 25320.0 33

5 rows × 25 columns

Out[29]:
video_duration_sec video_view_count video_like_count video_share_count video_download_co

0 54 692084.0 135956.0 16591.0 6

1 37 5164.0 1858.0 36.0

2 39 801951.0 344163.0 57608.0 85

3 44 6429.0 2314.0 847.0

4 26 555780.0 106863.0 15348.0 2

5 rows × 25 columns

Concatenate `X_val` and `validation_count_df` to form the final dataframe for
Note: Using `.reset_index(drop=True)` to reset the index in X_val after dropp
so that the indices align with those in `validation_count_df`
X_val_final = pd.concat([X_val.drop(columns=['video_transcription_text']).reset
​
Display first few rows
X_val_final.head()

Extract numerical features from `video_transcription_text` in the testing set
test_count_data = count_vec.transform(X_test['video_transcription_text']).toarr
​
Place the numerical representation of `video_transcription_text` from test se
test_count_df = pd.DataFrame(data=test_count_data, columns=count_vec.get_featur
​
Concatenate `X_val` and `validation_count_df` to form the final dataframe for
X_test_final = pd.concat([X_test.drop(columns=['video_transcription_text']
).reset_index(drop=True), test_count_df],
X_test_final.head()

11/19/23, 6:58 PM ML_TikTok project by Ayobola Lawal_II - Jupyter Notebook

localhost:8888/notebooks/Downloads/Data Science Project/ML_TikTok project by Ayobola Lawal_II.ipynb# 15/25

Task 6. Build models

Build a random forest model

Fit a random forest model to the training set. Use cross-validation to tune the hyperparameters
and select the model that performs best on recall.

In [30]:

Note this cell might take several minutes to run.

In [31]:

CPU times: user 5min 37s, sys: 584 ms, total: 5min 37s
Wall time: 5min 37s

Out[31]: GridSearchCV(cv=5, estimator=RandomForestClassifier(random_state=0),
 param_grid={'max_depth': [5, 7, None], 'max_features': [0.3, 0.
6],
 'max_samples': [0.7], 'min_samples_leaf': [1, 2],
 'min_samples_split': [2, 3],
 'n_estimators': [75, 100, 200]},
 refit='recall', scoring={'recall', 'accuracy', 'precision', 'f
1'})
In a Jupyter environment, please rerun this cell to show the HTML representation or trust
the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with
nbviewer.org.

Instantiate the random forest classifier
rf = RandomForestClassifier(random_state=0)
​
Create a dictionary of hyperparameters to tune
cv_params = {'max_depth': [5, 7, None],
 'max_features': [0.3, 0.6],
 # 'max_features': 'auto'
 'max_samples': [0.7],
 'min_samples_leaf': [1,2],
 'min_samples_split': [2,3],
 'n_estimators': [75,100,200],
 }
​
Define a dictionary of scoring metrics to capture
scoring = {'accuracy', 'precision', 'recall', 'f1'}
​
Instantiate the GridSearchCV object
rf_cv = GridSearchCV(rf, cv_params, scoring=scoring, cv=5, refit='recall')

%%time
rf_cv.fit(X_train_final, y_train)

11/19/23, 6:58 PM ML_TikTok project by Ayobola Lawal_II - Jupyter Notebook

localhost:8888/notebooks/Downloads/Data Science Project/ML_TikTok project by Ayobola Lawal_II.ipynb# 16/25

In [32]:

In [33]:

Exemplar response:

This model performs exceptionally well, with an average recall score of 0.995 across the five
cross-validation folds. After checking the precision score to be sure the model is not classifying
all samples as claims, it is clear that this model is making almost perfect classifications.

Build an XGBoost model

In [34]:

Note this cell might take several minutes to run.

Out[32]: 0.9948228253467271

Out[33]: {'max_depth': None,
'max_features': 0.6,
'max_samples': 0.7,
'min_samples_leaf': 1,
'min_samples_split': 2,
'n_estimators': 200}

Examine best recall score
rf_cv.best_score_

Examine best parameters
rf_cv.best_params_

Instantiate the XGBoost classifier
xgb = XGBClassifier(objective='binary:logistic', random_state=0)
​
Create a dictionary of hyperparameters to tune
cv_params = {'max_depth': [4,8,12],
 'min_child_weight': [3, 5],
 'learning_rate': [0.01, 0.1],
 'n_estimators': [300, 500]
 }
​
Define a dictionary of scoring metrics to capture
scoring = {'accuracy', 'precision', 'recall', 'f1'}
​
Instantiate the GridSearchCV object
xgb_cv = GridSearchCV(xgb, cv_params, scoring=scoring, cv=5, refit='recall')

11/19/23, 6:58 PM ML_TikTok project by Ayobola Lawal_II - Jupyter Notebook

localhost:8888/notebooks/Downloads/Data Science Project/ML_TikTok project by Ayobola Lawal_II.ipynb# 17/25

In [35]:

In [36]:

In [37]:

Exemplar response:

CPU times: user 9min 49s, sys: 2.06 s, total: 9min 51s
Wall time: 5min 1s

Out[35]: GridSearchCV(cv=5,
 estimator=XGBClassifier(base_score=None, booster=None,
 callbacks=None, colsample_bylevel=None,
 colsample_bynode=None,
 colsample_bytree=None,
 early_stopping_rounds=None,
 enable_categorical=False, eval_metric=No
ne,
 feature_types=None, gamma=None,
 gpu_id=None, grow_policy=None,
 importance_type=None,
 interaction_constraints=None,
 learning_rate=None,...
 max_delta_step=None, max_depth=None,
 max_leaves=None, min_child_weight=None,
 missing=nan, monotone_constraints=None,
 n_estimators=100, n_jobs=None,
 num_parallel_tree=None, predictor=None,
 random_state=0, ...),
 param_grid={'learning_rate': [0.01, 0.1], 'max_depth': [4, 8, 1
2],
 'min_child_weight': [3, 5],
 'n_estimators': [300, 500]},
 refit='recall', scoring={'recall', 'accuracy', 'precision', 'f
1'})
In a Jupyter environment, please rerun this cell to show the HTML representation or trust
the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with
nbviewer.org.

Out[36]: 0.9906808769992594

Out[37]: {'learning_rate': 0.1,
'max_depth': 4,
'min_child_weight': 5,
'n_estimators': 300}

%%time
xgb_cv.fit(X_train_final, y_train)

xgb_cv.best_score_

xgb_cv.best_params_

11/19/23, 6:58 PM ML_TikTok project by Ayobola Lawal_II - Jupyter Notebook

localhost:8888/notebooks/Downloads/Data Science Project/ML_TikTok project by Ayobola Lawal_II.ipynb# 18/25

This model also performs exceptionally well Although its recall score is very slightly lower than

PACE: Execute
Consider the questions in the PACE Strategy Documentto reflect on the Execute stage.

Task 7. Evaluate models
Evaluate models against validation data.

Random forest

In [38]:

Display the predictions on the validation set.

In [39]:

Display the true labels of the validation set.

In [40]:

Create a confusion matrix to visualize the results of the classification model.

Out[39]: array([1, 0, 1, ..., 1, 1, 1])

Out[40]: 5846 1
12058 0
2975 1
8432 1
6863 1
 ..
6036 1
6544 1
2781 1
6426 1
4450 1
Name: claim_status, Length: 3817, dtype: int64

Use the random forest "best estimator" model to get predictions on the valida
y_pred = rf_cv.best_estimator_.predict(X_val_final)

Display the predictions on the validation set
y_pred

Display the true labels of the validation set
y_val

11/19/23, 6:58 PM ML_TikTok project by Ayobola Lawal_II - Jupyter Notebook

localhost:8888/notebooks/Downloads/Data Science Project/ML_TikTok project by Ayobola Lawal_II.ipynb# 19/25

In [41]:

Exemplar notes:

The upper-left quadrant displays the number of true negatives: the number of opinions that the
model accurately classified as so.

The upper-right quadrant displays the number of false positives: the number of opinions that the
model misclassified as claims.

The lower-left quadrant displays the number of false negatives: the number of claims that the
model misclassified as opinions.

The lower-right quadrant displays the number of true positives: the number of claims that the
model accurately classified as so.

Create a confusion matrix to visualize the results of the classification mode
​
Compute values for confusion matrix
log_cm = confusion_matrix(y_val, y_pred)
​
Create display of confusion matrix
log_disp = ConfusionMatrixDisplay(confusion_matrix=log_cm, display_labels=None)
​
Plot confusion matrix
log_disp.plot()
​
Display plot
plt.show()

11/19/23, 6:58 PM ML_TikTok project by Ayobola Lawal_II - Jupyter Notebook

localhost:8888/notebooks/Downloads/Data Science Project/ML_TikTok project by Ayobola Lawal_II.ipynb# 20/25

A perfect model would yield all true negatives and true positives, and no false negatives or false
positives.

Create a classification report that includes precision, recall, f1-score, and accuracy metrics to
evaluate the performance of the model.

Note: In other labs there was a custom-written function to extract the accuracy, precision, recall,
and F scores from the GridSearchCV report and display them in a table. You can also use
scikit-learn's built-in classification_report() (https://scikit-
learn.org/stable/modules/model_evaluation.html#classification-report) function to obtain a
similar table of results.

1

In [42]:

Exemplar response:

The classification report above shows that the random forest model scores were nearly perfect.
The confusion matrix indicates that there were 10 misclassifications—five false postives and five
false negatives.

XGBoost

Now, evaluate the XGBoost model on the validation set.

In [43]:

In [44]:

 precision recall f1-score support

 opinion 1.00 1.00 1.00 1892
 claim 1.00 1.00 1.00 1925

 accuracy 1.00 3817
 macro avg 1.00 1.00 1.00 3817
weighted avg 1.00 1.00 1.00 3817

Out[44]: array([1, 0, 1, ..., 1, 1, 1])

Create a classification report
Create classification report for random forest model
target_labels = ['opinion', 'claim']
print(classification_report(y_val, y_pred, target_names=target_labels))

#Evaluate XGBoost model
y_pred = xgb_cv.best_estimator_.predict(X_val_final)

y_pred

11/19/23, 6:58 PM ML_TikTok project by Ayobola Lawal_II - Jupyter Notebook

localhost:8888/notebooks/Downloads/Data Science Project/ML_TikTok project by Ayobola Lawal_II.ipynb# 21/25

In [45]:

In [46]:

 precision recall f1-score support

 opinion 0.99 1.00 0.99 1892
 claim 1.00 0.99 0.99 1925

 accuracy 0.99 3817
 macro avg 0.99 0.99 0.99 3817
weighted avg 0.99 0.99 0.99 3817

Compute values for confusion matrix
log_cm = confusion_matrix(y_val, y_pred)
​
Create display of confusion matrix
log_disp = ConfusionMatrixDisplay(confusion_matrix=log_cm, display_labels=None)
​
Plot confusion matrix
log_disp.plot()
​
Display plot
plt.title('XGBoost - validation set');
plt.show()
​

Create a classification report
target_labels = ['opinion', 'claim']
print(classification_report(y_val, y_pred, target_names=target_labels))

11/19/23, 6:58 PM ML_TikTok project by Ayobola Lawal_II - Jupyter Notebook

localhost:8888/notebooks/Downloads/Data Science Project/ML_TikTok project by Ayobola Lawal_II.ipynb# 22/25

Exemplar response:

The results of the XGBoost model were also nearly perfect. However, its errors tended to be
false negatives. Identifying claims was the priority, so it's important that the model be good at
capturing all actual claim videos. The random forest model has a better recall score, and is
therefore the champion model.

Use champion model to predict on test data
Both random forest and XGBoost model architectures resulted in nearly perfect models.
Nonetheless, in this case random forest performed a little bit better, so it is the champion model.

Now, use the champion model to predict on the test data.

In [47]: # Use champion model to predict on test data
y_pred = rf_cv.best_estimator_.predict(X_test_final)

11/19/23, 6:58 PM ML_TikTok project by Ayobola Lawal_II - Jupyter Notebook

localhost:8888/notebooks/Downloads/Data Science Project/ML_TikTok project by Ayobola Lawal_II.ipynb# 23/25

In [48]:

Feature importances of champion model

Compute values for confusion matrix
log_cm = confusion_matrix(y_test, y_pred)
​
Create display of confusion matrix
log_disp = ConfusionMatrixDisplay(confusion_matrix=log_cm, display_labels=None)
​
Plot confusion matrix
log_disp.plot()
​
Display plot
plt.title('Random forest - test set');
plt.show()

11/19/23, 6:58 PM ML_TikTok project by Ayobola Lawal_II - Jupyter Notebook

localhost:8888/notebooks/Downloads/Data Science Project/ML_TikTok project by Ayobola Lawal_II.ipynb# 24/25

In [49]:

Exemplar response:

The most predictive features all were related to engagement levels generated by the video. This
is not unexpected, as analysis from prior EDA pointed to this conclusion.

Conclusion
In this step use the results of the models above to formulate a conclusion. Consider the
following questions:

1. Would I recommend using this model? Why or why not?
2. What was the model doing? Can we explain how it was making predictions?
3. Are there new features that we can engineer that might improve model performance?
4. What features would we want to have that would likely improve the performance of

the model?

importances = rf_cv.best_estimator_.feature_importances_
rf_importances = pd.Series(importances, index=X_test_final.columns)
​
fig, ax = plt.subplots()
rf_importances.plot.bar(ax=ax)
ax.set_title('Feature importances')
ax.set_ylabel('Mean decrease in impurity')
fig.tight_layout()

11/19/23, 6:58 PM ML_TikTok project by Ayobola Lawal_II - Jupyter Notebook

localhost:8888/notebooks/Downloads/Data Science Project/ML_TikTok project by Ayobola Lawal_II.ipynb# 25/25

Remember, sometimes the data simply will not be predictive of the chosen target. This is
common. Machine learning is a powerful tool, but it is not magic. If the data does not contain
predictive signal, even the most complex algorithm will not be able to deliver consistent and
accurate predictions. Do not be afraid to draw this conclusion.

Exemplar response:

1. Would we recommend using this model? Why or why not? Yes, one can recommend this
model because it performed well on both the validation and test holdout data. Furthermore,
both precision and F scores were consistently high. The model very successfully classified
claims and opinions.

2. What was the model doing? Can we explain how it was making predictions? The model's
most predictive features were all related to the user engagement levels associated with
each video. It was classifying videos based on how many views, likes, shares, and
downloads they received.

3. Are there new features that we can engineer that might improve model performance?
Because the model currently performs nearly perfectly, there is no need to engineer any
new features.

4. What features would we want to have that would likely improve the performance of the
model? The current version of the model does not need any new features. However, it
would be helpful to have the number of times the video was reported. It would also be
useful to have the total number of user reports for all videos posted by each author.

1

